34,667 research outputs found

    Neutron Star Kicks from Asymmetric Collapse

    Full text link
    Many neutron stars are observed to be moving with spatial velocities, in excess of 500km/s. A number of mechanisms have been proposed to give neutron stars these high velocities. One of the leading classes of models proposed invokes asymmetries in the core of a massive star just prior to collapse. These asymmetries grow during the collapse, causing the resultant supernova to also be asymmetric. As the ejecta is launched, it pushes off (or ``kicks'') the newly formed neutron star. This paper presents the first 3-dimensional supernova simulations of this process. The ejecta is not the only matter that kicks the newly-formed neutron star. Neutrinos also carry away momentum and the asymmetric collapse leads also to asymmetries in the neutrinos. However, the neutrino asymmetries tend to damp out the neutron star motions and even the most extreme asymmetric collapses presented here do not produce final neutron star velocities above 200km/s.Comment: 7 pages, 4 figures, see http://qso.lanl.gov/~clf/papers/kick.ps.gz for full figure

    The size distribution of magnetic bright points derived from Hinode/SOT observations

    Full text link
    Context. Magnetic Bright Points (MBPs) are small-scale magnetic features in the solar photosphere. They may be a possible source of coronal heating by rapid footpoint motions that cause magnetohydrodynamical waves. The number and size distribution are of vital importance in estimating the small scale-magnetic-field energy. Aims. The size distribution of MBPs is derived for G-band images acquired by the Hinode/SOT instrument. Methods. For identification purposes, a new automated segmentation and identification algorithm was developed. Results. For a sampling of 0.108 arcsec/pixel, we derived a mean diameter of (218 +- 48) km for the MBPs. For the full resolved data set with a sampling of 0.054 arcsec/pixel, the size distribution shifted to a mean diameter of (166 +- 31) km. The determined diameters are consistent with earlier published values. The shift is most probably due to the different spatial sampling. Conclusions. We conclude that the smallest magnetic elements in the solar photosphere cannot yet be resolved by G-band observations. The influence of discretisation effects (sampling) has also not yet been investigated sufficiently.Comment: Astronomy and Astrophysics, Volume 498, Issue 1, 2009, pp.289-29

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Out of equilibrium quantum field dynamics of an initial thermal state after a change in the external field

    Full text link
    The effects of the initial temperature in the out of equilibrium quantum field dynamics in the presence of an homogeneous external field are investigated. We consider an initial thermal state of temperature T for a constant external field J. A subsequent sign flip of the external field, J to -J, gives rise to an out of equilibrium nonperturbative quantum field dynamics. The dynamics is studied here for the symmetry broken lambda(Phi^2)^2 scalar N component field theory in the large N limit. We find a dynamical effective potential for the expectation value that helps to understand the dynamics. The dynamics presents two regimes defined by the presence or absence of a temporal trapping close to the metastable equilibrium position of the potential. The two regimes are separated by a critical value of the external field that depends on the initial temperature. The temporal trapping is shorter for larger initial temperatures or larger external fields. Parametric resonances and spinodal instabilities amplify the quantum fluctuations in the field components transverse to the external field. When there is a temporal trapping this is the main mechanism that allows the system to escape from the metastable state for large N. Subsequently backreaction stops the growth of the quantum fluctuations and the system enters a quasiperiodic regime.Comment: LaTeX, 19 pages, 12 .eps figures, improved version to appear in Phys Rev

    Dynamics of isolated magnetic bright points derived from Hinode/SOT G-band observations

    Full text link
    Small-scale magnetic fields in the solar photosphere can be identified in high-resolution magnetograms or in the G-band as magnetic bright points (MBPs). Rapid motions of these fields can cause magneto-hydrodynamical waves and can also lead to nanoflares by magnetic field braiding and twisting. The MBP velocity distribution is a crucial parameter for estimating the amplitudes of those waves and the amount of energy they can contribute to coronal heating. The velocity and lifetime distributions of MBPs are derived from solar G-band images of a quiet sun region acquired by the Hinode/SOT instrument with different temporal and spatial sampling rates. We developed an automatic segmentation, identification and tracking algorithm to analyse G-Band image sequences to obtain the lifetime and velocity distributions of MBPs. The influence of temporal/spatial sampling rates on these distributions is studied and used to correct the obtained lifetimes and velocity distributions for these digitalisation effects. After the correction of algorithm effects, we obtained a mean MBP lifetime of (2.50 +- 0.05) min and mean MBP velocities, depending on smoothing processes, in the range of (1 - 2) km/s. Corrected for temporal sampling effects, we obtained for the effective velocity distribution a Rayleigh function with a coefficient of (1.62 +- 0.05) km/s. The x- and y- components of the velocity distributions are Gaussians. The lifetime distribution can be fitted by an exponential function.Comment: Astronomy and Astrophysics (in press

    Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse

    Full text link
    We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra, final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are detectable by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan. 2004). Revised version: Corrected typos and minor mistakes in text and references. Minor additions to the text according to the referee's suggestions, conclusions unchange

    Carrier scattering, mobilities and electrostatic potential in mono-, bi- and tri-layer graphenes

    Full text link
    The carrier density and temperature dependence of the Hall mobility in mono-, bi- and tri-layer graphene has been systematically studied. We found that as the carrier density increases, the mobility decreases for mono-layer graphene, while it increases for bi-layer/tri-layer graphene. This can be explained by the different density of states in mono-layer and bi-layer/tri-layer graphenes. In mono-layer, the mobility also decreases with increasing temperature primarily due to surface polar substrate phonon scattering. In bi-layer/tri-layer graphene, on the other hand, the mobility increases with temperature because the field of the substrate surface phonons is effectively screened by the additional graphene layer(s) and the mobility is dominated by Coulomb scattering. We also find that the temperature dependence of the Hall coefficient in mono-, bi- and tri-layer graphene can be explained by the formation of electron and hole puddles in graphene. This model also explains the temperature dependence of the minimum conductance of mono-, bi- and tri-layer graphene. The electrostatic potential variations across the different graphene samples are extracted.Comment: 18 pages, 7 figure
    corecore